
Nonlinear denoising of functional magnetic resonance imaging time series with wavelets

Sven Stausberg1,2,3,* and Klaus Lehnertz1,3,4,†

1Department of Epileptology, Neurophysics Group, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
2Department of NeuroCognition, LIFE & BRAIN GmbH, Sigmund-Freud-Str. 25, 53127 Bonn, Germany

3Helmholtz-Institute for Radiation and Nuclear Physics, University of Bonn, Nussallee 14-16, 53115 Bonn, Germany
4Interdisciplinary Center for Complex Systems, University of Bonn, Römerstr. 164, 53117 Bonn, Germany

�Received 28 February 2008; published 15 April 2009�

In functional magnetic resonance imaging �fMRI� the blood oxygenation level dependent �BOLD� effect is
used to identify and delineate neuronal activity. The sensitivity of a fMRI-based detection of neuronal activa-
tion, however, strongly depends on the relative levels of signal and noise in the time series data, and a large
number of different artifact and noise sources interfere with the weak signal changes of the BOLD response.
Thus, noise reduction is important to allow an accurate estimation of single activation-related BOLD signals
across brain regions. Techniques employed so far include filtering in the time or frequency domain which,
however, does not take into account possible nonlinearities of the BOLD response. We here evaluate a previ-
ously proposed method for nonlinear denoising of short and transient signals, which combines the wavelet
transform with techniques from nonlinear time series analysis. We adopt the method to the problem at hand and
show that successful noise reduction and, more importantly, preservation of the shape of individual BOLD
signals can be achieved even in the presence of in-band noise.
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I. INTRODUCTION

Investigation of neuronal activity by functional magnetic
resonance imaging �fMRI� has grown to a widely used
method in brain research �1�. A tight relation exists between
neuronal activation, cerebral energy metabolism, and cere-
bral vasculature and is called the neurovascular coupling �2�.
With neuronal activity the regional cerebral blood flow is
increasing, which causes a change in the oxygenated to
deoxygenated blood ratio. This change in blood oxygenation
induces signal intensity changes in T2� weighted MRI im-
ages and is called the blood oxygenation level dependent
�BOLD� effect �3�.

The accurate estimation of single activation-related
BOLD signals across brain regions is of particular relevance
to improve understanding of the neuronal basis of hemody-
namic responses. In the analysis of time-resolved fMRI data
one is faced with the problem that BOLD signals typically
constitute only a small fraction of the available fMRI time
series and are of low amplitude. Moreover, fMRI time series
are superimposed by many sources of noise and artifacts,
which renders a straightforward detection of single BOLD
signals by visual inspection almost impossible. In order to
improve the very low signal-to-noise ratio �SNR� averaging
of fMRI time series evoked by multiple repetitions of the
same stimulus is commonly used. With this approach it is
assumed that the repetitions lead to the same neuronal acti-
vation and BOLD signal characteristics �4�. These assump-
tions, however, may be inaccurate in practice and any alter-
ations of the BOLD signal, which is known to exhibit a
substantial variability �5�, will lead to a destruction of signal-
related components.

A method for nonlinear denoising of short and transient
signals has been proposed by Effern et al. �6�. It combines
the wavelet transform with techniques already developed for
the paradigm of deterministic chaotic systems using time-
delay embeddings of signals for state space reconstruction
and denoising �7–9�. These techniques were shown to allow
reduction of noise in a variety of physiologic data such as
speech �10–12� and heart signals �13–16�. With circular state
space embedding nonlinear denoising with wavelets enabled
the study of individual short-lasting event-related activity
against strong ongoing brain electrical activity �6,17�.

Nonlinear denoising with wavelets is quite different from
conventional low- or band-pass filtering in the Fourier do-
main, because denoising takes part in all frequency bands.
Nonlinear denoising may also be better suited for the treat-
ment of noisy fMRI time series particularly with respect to
the possibly nonlinear structure of the BOLD signal �18�
with which filter techniques that preferentially focus on spec-
tral or linear properties of fMRI time series �19–27� may
interact unfavorably.

We here exploit the merit of the denoising method pro-
posed in Ref. �6� for the detection of individual BOLD sig-
nals in short and noisy fMRI time series. Since BOLD sig-
nals consist of only a limited amount of data points �typically
a few ten� we do not use circular state space embedding to
achieve a sufficient filling of the state space. Instead we pur-
sue another though closely related strategy and take advan-
tage of fMRI data acquisition which allows a dense spatial
sampling �typically a few mm3� of an activated brain region.
By embedding time series from several nearby voxels, to-
gether with the one we want to denoise, and with appropri-
ately chosen parameters of the denoising technique we show
that successful noise reduction and, more importantly, pres-
ervation of the shape of individual BOLD signals in test
fMRI time series can be achieved even in the presence of
in-band noise.

*sven.stausberg@uni-bonn.de
†klaus.lehnertz@ukb.uni-bonn.de

PHYSICAL REVIEW E 79, 041914 �2009�

1539-3755/2009/79�4�/041914�8� ©2009 The American Physical Society041914-1

http://dx.doi.org/10.1103/PhysRevE.79.041914


This paper is organized as follows. In Sec. II we briefly
recall the nonlinear denoising method proposed in Ref. �6�
together with our technical implementation details. In Sec.
III A we describe the results obtained from denoising test
fMRI time series contaminated with white and in-band noise.
Section III B is dedicated to the nonlinear denoising of ex-
perimental fMRI data sets and in Sec. IV we present our
conclusions.

II. METHODS

A. Nonlinear denoising with wavelets

We assume a measured time series yn ,n=1, . . . ,N to rep-
resent a superposition of the true signal xn �which we want to
identify� and random noise �n, i.e., yn=xn+�n. If yn is purely
deterministic, it is restricted to a low-dimensional subspace.
For the fMRI time series we are concerned with here, we
assume this still to be valid. We hope to identify this direc-
tion and to correct yn by simply projecting it onto the sub-
space spanned by the clean data �7,13�.

In order to realize projections onto noise-free subspaces,
it was proposed in Ref. �6� to calculate wavelet transforms of
delay vectors and to determine signal-related components by
estimating variances separately for each state space direction
�see Ref. �6� for advantages of this approach over the com-
monly used singular value decomposition for the treatment
of transient signals�. With this denoising scheme, the ob-
served time series Y = �y1 ,y2 , . . . ,yN� is time-delay embedded
into an m-dimensional state space, which leads to state space
vectors yn= �yn , . . . ,yn−�m−1���, where � is an appropriate time
delay. Next, we select a state space vector yn we want to
correct and identify its k nearest neighbors yrn,j

using the
Euclidean norm �rn,j with j=0, . . . ,k denote the indices of
the k nearest neighbors of yn, and for yn itself, i.e., j=0, and
rn,0=n�. We then compute the discrete wavelet transform
�28� of yrn,j

and denote the wavelet transformed state space
vectors by wrn,j

. As already mentioned above, the important
assumption is that the clean signal lies within a subspace of
dimension d�m. Furthermore, we assume that this subspace
is spanned by only a few basis functions in the wavelet do-
main. Now, let Cq

�k��wrn
�= �wrn,j

�q denote the qth component
of the center of mass of wrn

and �n,q
2 the corresponding vari-

ance. In the case of signal-related neighbors the ratio
Cq

�k��wrn
� /�n,q

2 is expected to be higher in signal than in
noise-related state space directions, which allows one to dis-
criminate between noisy and noise-free components in state
space. Using the shrinking condition �29�

w̃n,q = �wn,q, �Cq
�k��wrn

�� � 2�
�n,q

	k + 1

0, else

 �1�

where the threshold parameter � and the number of near-
est neighbors k depend on specific qualities of signal and
noise, we project onto the noise-free subspace. From the in-
verse wavelet transform of w̃n we obtain a corrected state
space vector, and by applying this scheme to all remaining
state space vectors the clean time series can be reconstructed.

When denoising fMRI time series one is faced with the
problem that these time series typically consist of a limited
amount of data points �100�N�700�, and a proper recon-
struction of the state space and detection of signal-related
state space directions cannot be guaranteed. If such short-
lasting time series, however, are measured repeatedly during
an experiment �e.g., following a sequence of well defined
stimuli� a sufficient number of delay vectors can be achieved
via circular embeddings even for high embedding dimen-
sions �cf. �6,17��. Nevertheless, since we here aim at denois-
ing fMRI time series following a single stimulus only, we
pursue another strategy. Given a sufficiently dense spatial
sampling of an activated brain region, fMRI time series from
nearby voxels exhibit a quite similar temporal evolution,
apart from amplitude alterations and/or temporal jitter. We
therefore expect that an embedding of fMRI time series from
several nearby voxels, together with the one we want to de-
noise, leads to a filling of the state space, so that a sufficient
number of nearest neighbors can be found for each vector.
Before embedding, we normalize each fMRI time series to
zero mean and unit variance.

In order to allow an accurate signal reconstruction in state
space the parameters embedding dimension m, time delay �,
thresholding coefficient �, as well as the number of nearest
neighbors k have to be chosen appropriately. Several meth-
ods have been developed to estimate “optimal” parameters
depending on specific aspects of the given data �e.g., noise
level, type of noise, stationarity, etc.� �7�. These methods,
however, assume that the clean signal is indeed low dimen-
sional, an assumption we are not ready to make in the case of
fMRI time series. Thus, we approached the problem of “op-
timal” parameters empirically. Parameters � and m are not
independent from each other. In particular, high embedding
dimensions allow small time delays and vice versa. We here
estimated “optimal” embedding dimensions, thresholding co-
efficients, and number of neighbors by varying m, �, and k
for a fixed �=1 and a fixed number of nearby �in the nearest-
neighbor sense� voxels L=6. To allow fast wavelet trans-
form, we chose m to be a power of 2. We here use a
Daubechies mother wavelet of order 4 �30�. In preliminary
investigations we tested Daubechies wavelets up to the order
of 20 as well as different wavelet basis function and ob-
served that both had a negligible influence on the denoising
performance �cf. �26��.

B. Generating noisy test fMRI time series

We simulated a so-called four-dimensional �4D� fMRI
volume, which consisted of N sequentially acquired three-
dimensional �3D� volumes with 64�64�30 voxels each. N
is thus the total number of data points of a fMRI time series
in a given voxel 	 and is composed of intensity values I
sampled at discrete times tn=n
t ,n=1, . . . ,N ,T=N
t,
where 
t denotes a properly chosen sampling interval. For a
fixed observation time T and for some voxel 	 we generated
a noisy fMRI time series

In
�	� = O�	� + In

B + �n
�	�, �2�

where O�	� denotes a constant intensity offset and �n
�	� rep-

resents the noise contribution. The BOLD signal In
B is de-
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rived from a convolution of the hemodynamic response func-
tion �31�

fn = �
i=1

3

�− 1�i li
hi�tn���hi−1�e−li�tn��

��hi�
�3�

with some stimulus function �we here used a Dirac-type
stimulus function that was switched on at non�n=99�. We
used the Gamma function ��x�, respectively, its probability
density function �32�, to simulate the initial dip �33,34�, and
the positive over- and negative undershoot. For the scale
parameters we used l1= l2= l3=0.2 and set the form param-
eters to h1=16, h2=6, and h3=2. The parameter � was set to
4.4. Note that with these parameter settings our test fMRI
time series—consisting of N� 128,256,512� data points—
contained relevant components of the BOLD signal that ex-
tended over nBOLD� 5,10,20� data points only.

Before adding noise we rescaled the BOLD signal In
B such

that the relative signal change 
I�	�=
Imax
B −O�	�

O�	� amounted to 1%
in all simulations �Imax

B denotes the peak amplitude of the
simulated BOLD signal�. We controlled the strength of the
noise contamination �n

�	� by the signal-to-noise ratio �SNR�,
which we here define as R=�B

2 /�N
2 , where �B

2 denotes the
variance of the rescaled BOLD signal and �N

2 the variance of
the noise. We used Gaussian white noise with zero mean or a
superposition of white and in-band noise �24,35�. The latter
was generated by adding low-amplitude �R=0.1� white noise
to a phase randomized surrogate �36� of the BOLD signal,
which approximately retains the power spectrum of the
noise-free BOLD signal. In the following, we refer to this
type of noise as in-band noise.

Intensity offset values O�	� were taken from a set of ex-
perimentally derived 4D fMRI volumes �five volunteers par-
ticipating in different fMRI experiments that were acquired
with two different MR scanners �1.5 and 3 T� from the same
manufacturer�. Randomly selected 3D volumes from this set
served as templates for our simulations and the known dis-
tribution of their intensity offset values allowed us to prop-
erly place voxels of interest into the brain volume.

For the generation of noisy activation patterns we used
different 3D spatial activation functions �a Gaussian function
with j voxels at full width at half maximum in each direc-
tion, a triangular as well as a boxcar function with j voxels
base length in each direction�. We randomly selected a ref-
erence voxel 	ref �in the brain volume� and—given the prop-
erties of a chosen activation function—assigned fMRI time
series to voxel 	ref and its nearby voxels using the methods
described above. Note that this procedure—except for the
boxcar activation function—lowered the SNR in each nearby
voxel in dependence on its distance to the reference voxel.

C. Measuring denoising efficiency

Appropriate choice of parameters, in particular embed-
ding dimension m, thresholding coefficient �, as well as the
number of neighbors k is important for accurate signal recon-
struction in state space. We here assessed the efficiency of
our denoising technique using the following measures.

For the time segments before �n� 1,non−1�� and after

the BOLD signal �n� non+nBOLD+1,N�� we consider the
noise reduction factor = ��t

2−�d
2� /�t

2, where �d
2 denotes the

variance of the denoised time series and �t
2 is the variance of

the noisy time series. =1 �i.e., �d
2=0� indicates optimal

noise reduction.
With the linear correlation coefficient r we measure the

similarity between the denoised and the noise-free BOLD
signal, taking into account the time segment that includes the
BOLD signal only �n� non,non+nBOLD��. For r=1 the de-
noised and noise-free BOLD signal intensity values are iden-
tical and our denoising technique fully preserves the original
BOLD signal shape.

III. RESULTS

A. Denoising test fMRI time series

In order to estimate “optimal” values for the embedding
dimension m, thresholding coefficient �, and number k of
nearest neighbors in state space we determined  and r for
test fMRI time series contaminated with noise �white and
in-band noise� of different strength �R� 0.01,0.1,1��. For
each 3D spatial activation function �with j=3� we simulated
50 independent 4D fMRI volumes. In each volume, we ran-
domly chose a reference voxel—located in the brain
volume—together with its L nearby voxels and assigned
noisy fMRI time series �N� 128,256,512�� to these voxels
�cf. Sec. II B�. We then applied our technique to denoise the
fMRI time series from the reference voxel.

In the following we present our findings for N=256 and
for a 3D Gaussian activation function. Using other activation
functions we obtained almost identical results �within the
range of errors� for “optimal” denoising parameters. In order
to cover relevant components of the BOLD signal �nBOLD
=5 for N=128; cf. Sec. II B� we followed Ref. �6� and used
m=4 as minimum embedding dimension. The highest em-
bedding dimension was bounded by the number of data
points N, thus allowing m=256.

In Fig. 1 we show for R� 0.01,0.1,1� the dependence of
r and  on the number k of nearest neighbors and on the
embedding dimension m. We were able to identify a range of
k values for which r remained almost constant �r�R=0.01�
=0.41�0.04, r�R=0.1�=0.85�0.02, and r�R=1�
=0.96�0.08�. This range had an upper bound near the maxi-
mum number kmax= �N− �m−1����L+1�−1 of available state
space vectors. Within this range r attained significant values
�p�0.05;r�0.52� but for R� 0.1,1� only.

For all investigated SNR  attained highest values �i.e.,
→1� for k close to kmax, but in this range we already ob-
served r→0, indexing a complete destruction of the BOLD
signal. This is in line with theoretical considerations indicat-
ing that signal detection in state space is not possible when
selecting k too high. Only an embedding dimension m=128
allowed lower values of k, where both  and r attained high
values. Detailed investigations for k� �1,50�, �=1, and m
=128 �see left panel of Fig. 2� revealed that k�10 led to a
successful noise reduction ��R=0.01�=0.83�0.02, �R
=0.1�=0.85�0.02, and �R=1�=0.96�0.02� and high val-
ues of r, at least for R� 0.1,1� �r�R=0.01�=0.43�0.12,
r�R=0.1�=0.88�0.01, and r�R=1�=0.98�0.01�. Selecting
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lower values of k �k�10� resulted in higher values for  but
also in slightly lower values for r for all SNR. From these
findings and from the corresponding studies using in-band
noise �cf. Tables I and II� we conclude that the choice of k
=10 and m=128 can be regarded as “optimal” for time series
that consist of N=256 data points. Investigations for N
� 128,512� necessitated an adjustment of the embedding
dimension �m=64 for N=128, m=256 for N=512� but the
“optimal” value of nearest neighbors remained at k=10. We
obtained qualitatively similar results for other values of �
within the range �0.1, 2.0�.

In the right panel of Fig. 2 we show the dependence of 
and r on the thresholding coefficient �. Using “optimal” val-

ues for k and m we identified for R� 0.1,1� a range of
values �� �1.0,1.5� for which both efficiency measures at-
tained maximum values �R=1: 0.97�r�0.99, 0.95�
�0.99; R=0.1: 0.55�r�0.96, 0.82��0.99�. For R
=0.01 r attained nonsignificant mean values only �r=0.52 for
p�0.05� and decreased rapidly for ��1.5. Taking into ac-
count the characteristics of r and , however, choosing �
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FIG. 1. �Color online� Dependence of the noise reduction factor
 �left� and the similarity measure r �right� on the number k of
nearest neighbors and on the embedding dimension m for different
SNR �top: R=0.01; middle: R=0.1; bottom: R=1� and �=1. The
mean values of  and r are plotted for k�kmax. 50 test fMRI time
series superimposed with white noise �N=256; nBOLD=10�.
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FIG. 2. �Color online� Dependence of the noise reduction factor
 �red, dotted line� and the similarity measure r �black, straight line�
on the number of k nearest neighbors �left, �=1� and on the thresh-
olding coefficient � �right, k=10� for different SNR �top: R=0.01;
middle: R=0.1; bottom: R=1� and m=128. Error bars denote stan-
dard deviations derived from 50 test fMRI time series superimposed
with white noise �N=256; nBOLD=10�.

TABLE I. Summary of results obtained from denoising 50 test
fMRI time series consisting of N data points and contaminated with
white noise at different SNR using “optimal” parameters. Means
and standard deviations of similarity measure r and the noise reduc-
tion factor .

N=128 R=0.01 R=0.1 R=1

r 0.35�0.47 0.85�0.03 0.98�0.02

 0.72�0.04 0.74�0.05 0.95�0.04

N=256 R=0.01 R=0.1 R=1

r 0.43�0.34 0.88�0.09 0.98�0.01

 0.83�0.02 0.85�0.02 0.96�0.02

N=512 R=0.01 R=0.1 R=1

r 0.43�0.20 0.92�0.05 0.98�0.01

 0.89�0.01 0.92�0.02 0.99�0.01
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� �0.5,1.0� might be more appropriate to achieve a sufficient
noise reduction without additionally lowering r. Again we
observed similar dependencies for contaminations with in-
band noise �cf. Table II� and thus conclude �=1 as an appli-
cable parameter. We obtained qualitatively similar results for
time series consisting of N=128 and N=512 data points.

Exemplary test fMRI time series contaminated with white
and in-band noise along with the denoised time series are
shown in Fig. 3. In Tables I and II we summarize our results
obtained from denoising time series with different number of
data points, contaminated with white and in-band noise at
different SNR, and using “optimal” parameters. Our denois-
ing technique allowed a good noise reduction and preserved
significantly the BOLD signal shape for R� 0.1,1�. As ex-
pected we obtained a declined performance for contamina-
tions with in-band noise.

Before closing this section, we briefly discuss two special
cases that occur when denoising a complete 4D volume data
set. First, if the reference voxel is located on the boundary of
the brain volume, there may be steep spatial intensity gradi-
ents within the L voxels. Since the normalization �zero mean
and unit variance� of the time series before state space em-
bedding compensates for strong intensity transitions, denois-
ing efficiency should not be affected. Second, if the reference
voxel is located on the boundary of a rectangular volume
data set, the number of nearby voxels time series is reduced
�L�6�, leading to a worse representation of signal-related
directions in state space. In typical fMRI volume data sets,
however, voxels that are located on the boundary of a rect-
angular volume data set usually do not carry relevant infor-
mation, and a noise reduction can be attained even with a
reduced number of nearby voxels time series. In other cases,
the choice of appropriate boundary conditions may help to
increase L. Using the respective simulation setups we were
able to confirm these theoretical predictions �results not
shown here�. Finally, we mention that when sequentially de-
noising a 4D volume data set the inclusion of already de-
noised time series from nearby voxels may necessitate an
adjustment of parameters, particularly k and �.

B. Denoising experimental fMRI time series

In this section we present our findings obtained from de-
noising experimental fMRI time series. Data set no. 1 �ma-

trix size: 64�64, voxel size: 3�3�3.3 mm3, 35 slices�
was acquired at 1.5 T from a blocked paradigm with a motor
task that consisted of alternating right and left fist clenching
for 21 s and 3 s rest between each hand change. With a
sampling interval of 
t=3 s the fMRI time series consisted
of N=160 data points. Data set no. 2 �matrix size: 64�64,
voxel size: 3�3�3 mm3, 64 slices� is publicly available
�37�. Data were acquired at 2 T from a blocked paradigm
with an auditory stimulation. Rest blocks alternated with
blocks of auditory stimulation �60 bisyllabic words/min pre-
sented binaurally�, and each of the 16 blocks lasted for 42 s.
With a sampling interval of 
t=7 s the original fMRI time
series consisted of N=96 data points.

Before state space reconstruction we removed—by linear
detrending—long-lasting drifts that are typical in experimen-
tal fMRI data �38� and, for each voxel, rescaled the time
series to zero mean and unit variance. We denoised the com-
plete 4D fMRI volumes with parameters �=1 and k=10.
Due to the different number of data points we used m=128
for data set no. 1 and m=64 for data set no. 2 �cf. Sec. III A�.
For each voxel, we calculated the linear correlation coeffi-
cient rr between the normalized raw time series and the nor-
malized expected BOLD signal, which we derived from con-
volving Eq. �3� with an experiment-specific stimulus boxcar
function �data set no. 1: duration: 21 s; data set no. 2: dura-
tion: 42 s�. The linear correlation coefficient rd between the
denoised time series and the normalized expected BOLD sig-
nal was calculated accordingly.

TABLE II. Same as Table I but for contaminations with in-band
noise.

N=128 R=0.01 R=0.1 R=1

r 0.40�0.59 0.82�0.20 0.98�0.02

 0.65�0.05 0.66�0.06 0.92�0.07

N=256 R=0.01 R=0.1 R=1

r 0.39�0.42 0.81�0.15 0.98�0.01

 0.63�0.04 0.61�0.04 0.93�0.05

N=512 R=0.01 R=0.1 R=1

r 0.38�0.42 0.82�0.15 0.98�0.01

 0.44�0.03 0.44�0.04 0.68�0.08

c.

b.

a.

FIG. 3. Denoising test fMRI time series contaminated with dif-
ferent types of noise �left: white noise; right: in-band noise� at dif-
ferent SNR. �a� R=0.01, Top to bottom: BOLD signal, BOLD
signal+noise, denoised signal, residual noise. �b� Same as �a� but
for R=0.1. �c� Same as �a� but for R=1. The BOLD signal extents
over nBOLD=10 data points �N=256, non�n=99, and 
I�	�=1%�.
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In Figs. 4�a� and 5�a� we show exemplary normalized raw
and their denoised fMRI time series from data sets no. 1 and
no. 2 along with the corresponding Fourier spectra �39�. Our
denoising technique drastically reduced noise in all fre-
quency bands and allowed one to detect even single BOLD
responses in the fMRI time series. In order to quantify the
noise reduction we estimated the signal-to-noise ratio gain
G=Rd /Rr, where Rd=�B

2 /�N,d
2 and Rr=�B

2 /�N,r
2 denote the

signal-to-noise ratios for the normalized raw and their de-
noised time series, respectively. We used the variance of the
normalized expected BOLD signal as an estimate for �B

2 . The
variances of the residual time series �difference between nor-
malized raw �respectively denoised� fMRI time series and
normalized expected BOLD signal� served as estimates for

�N,r
2 ��N,d

2 �. For the presented fMRI time series our denoising
technique resulted in a signal-to-noise ratio gain of G
=1.6�0.3.

In part �b� of Figs. 4 and 5 we show voxels for which the
correlation coefficients rr and rd exceeded some predefined
threshold value. The locations of these voxels coincide quite
well with brain regions that had been identified as being
activated in similar fMRI experiments �see, e.g., Refs.
�40,41��. Due to the noise reduction, however, we observe an
increased number of voxels for which their fMRI time series
exhibit a higher similarity to the expected BOLD signal �cf.
�24��. Whether these voxels reflect brain areas subserving
specific functions should be addressed in future studies.
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FIG. 4. �Color online� �a� Exemplary normalized raw �black, straight line� and their denoised fMRI time series �green, dotted line� from
data set no. 1 together with their Fourier spectra from the left �LH� and right �RH� brain hemisphere. Ar �Ad� denotes amplitude values of
the normalized raw �denoised� time series and P the power spectral density estimate. The expected BOLD signals and their Fourier spectra
for each hemisphere are shown on top. Similarity between normalized raw �denoised� fMRI time series and normalized expected BOLD
signals is estimated using the linear correlation coefficient rr �rd�. For each hemisphere, fMRI time series denoted as TS1 exhibited highest
similarity to the expected BOLD signal, while time series TS2–TS4 are from voxels with an increasing distance to the voxel from which TS1
was taken. Rr �Rd� denotes the estimated signal-to-noise ratio of each raw �denoised� fMRI time series. �b� Voxels at which the similarity
between raw �rr; top row� or denoised fMRI time series �rd; bottom row� and expected BOLD signals exceeds a predefined threshold value
�0.48� are shown as color-coded through projections onto orthogonal sections �left: sagittal; middle: coronal; right: axial� of the brain
volume. The arrows mark the voxel from which time series TS1 was taken.
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IV. CONCLUSION

We exploited an analysis method originally proposed in
Ref. �6� for the nonlinear denoising of short and transient
fMRI time series. A proper time-delay embedding of signals
for state space reconstruction and the detection of signal-
related state space directions require a large number of data
points �7,9�, which is usually not available from typical
fMRI time series. We therefore embedded fMRI time series
from several nearby voxels, together with the one we want to
denoise, assuming that an activated brain region can be spa-
tially sampled sufficiently dense and that fMRI time series
from voxels covering an activated brain region exhibit a
similar temporal evolution. With appropriately chosen pa-

rameters we achieved a filling of the state space that allowed
successful noise reduction and, moreover, preservation of the
shape of single BOLD signals in test fMRI time series even
in the presence of in-band noise.

Although our nonlinear denoising scheme requires the ap-
propriate choice of several parameters that are important for
an accurate signal reconstruction in state space, we were able
to narrow down the range of possible values for some pa-
rameters and to identify optimal values for the remaining
parameters. Nevertheless, it should be noted that nonlinear
noise reduction is rather computationally expensive, in par-
ticular if compared to Fourier-based filters. For small and
intermediate noise levels, this can be moderated by using fast
neighbor search strategies �42,43�. Further improvements
may also be obtained by using nonlinear noise reduction
schemes that are based on reference data sets �16�. Future
studies will have to reveal whether our nonlinear denoising
scheme can be regarded as an alternative to other more stan-
dard noise reduction methods �19–27�.

For the denoising of experimentally acquired time series
we chose parameters that allowed one to preserve the shape
of BOLD signals in our test fMRI time series evoked by a
single Dirac-type stimulus. Although this choice may not be
optimal for the experimental fMRI time series analyzed here,
our denoising technique nevertheless allowed us to identify
single BOLD signals from block design experiments where
long duration stimulus and control blocks are repeated. Cur-
rent fMRI studies use so called event-related designs �44�
with several different stimuli conditions in a more random
presentation. Such a design leads to a more complicated and
potentially more noisy expected BOLD response, if stimuli
are presented too rapidly. We expect though that the utility of
our techniques for the denoising of appropriately sampled
event-related fMRI time series can be demonstrated in future
studies. Using our denoising technique together with data-
driven, model-free analysis methods �45,46� may lead to an
improved activation detection, and together with new experi-
mental fMRI designs this may provide new insights into
brain dynamics.
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